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ABSTRACT

The complex finite difference method is extended to
form a self-consistent 3-D analysis tool for gain- and
index- guided semiconductor lasers. Single- and double-
strip laser diodes with and without strip discontinuities (to
accommodate the bias current contact pad) are investi-
gated by directly discretizing the 3-D Laplace equation,
the 2-D carrier rate equation and the scalar wave equation.
In combination with the Rayleigh variationa} principle, the
complex propagation constant of the first two lowest order
laser modes can be calculated as well as the complex
refractive index distribution in the active layer.

INTRODUCTION

Semiconductor laser diodes are modulated at higher
and higher bit rates requiring modulating bandwidths in
excess of 30 GHz. Considering the low input impedance
of most gain- and index-guided strip lasers, such a wide
frequency range imposes serious matching problems for
the microwave feed network. The situation becomes even
worse due to the fact that laser diodes are insufficiently
characterized at frequencies higher than 10-15GHz. Most
laser diodes are represented by network models for which
the element values are derived from either measurements
or simple transmission line calculations. However, since a
laser diode is basically an active transmission line, simple
transmission line theory represents only a very rough
approximation. On the other hand numerical techniques
that have been developed for passive transmission lines
can be utilized provided a self-consistent model including
the Laplace and the carrier continuity equation can be
developed.

If the laser diode is only regarded as a 2-D discontinu-
ity, meaning that there is no longitudinal change in the
refractive index or in the strip electrode, this problem has
been largely solved [1]-[6]. For cases, however, in which
the bias current contact pad is wider than the strip elec-
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trode, the 2-D model will not be valid anymore since now
a 3-D distribution of the current and carrier density distri-
bution must be taken into account. These changes in longi-
tudinal direction affect the laser mode profile as well as the
RF characteristics of the device.

In this paper we present a 3-D self-consistent numeri-
cal approach for a separate confinement heterostructure
(SCH)) strip laser with strip discontinuities along the longi-
tudinal direction. This technique is based on the complex
finite difference method[4][5] and takes into account the
complex refractive index in the active layer which is a
function of the bias current. The important feature here is
that the imaginary part of the refractive index represents
optical gain or loss which, in gain-guided lasers, is a func-
tion of the location of the electrode. For any calculation of
the complex impedance of the laser diode, the transverse
distribution of the complex gain profile must be known.

In the following we provide a brief description of the
numerical algorithm to analyze SCH semiconductor lasers
with single and twin strip electrodes containing disconti-
nuities in longitudinal direction of the biasing electrode.
Mode profiles as a function of the biasing current in twin
strip lasers will be presented as well as the complex propa-
gation constant and the current and carrier distribution at
the interface of the active region.

THEORY

Fig. 1 shows the typical semiconductor lasers configu-
ration with a separate confinement heterostructure. A slab
waveguide structure is formed with an active waveguiding
region sandwiched by two cladding layers. In the lateral
direction there is no well-defined guiding structure. Weak
waveguiding is provided by the lateral refractive index
profile due to the injection current spreading from the pas-
sive cladding layer into the active layer. When a biasing
voltage is applied to the strip, the potential distribution in
the passive cladding layer can be found as a solution to
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Laplace’s equation [5]:

Vv =0 (1

The current density injected into the active waveguiding
layer can be obtained by using the following expression:

Jyoq=-6-VVI,_, #)

Where d is the interface between the p-cladding and active
layer. This injected current density acts as the source of the
injected carrier distribution in the active layer. For large
forward biasing, continuity of the majority carrier quasi-
Fermi potential and charge neutrality condition can be
assumed, because of very high carrier concentration in this
region [6]. Along the lateral direction of the device the
injected carrier density profile in the active region is
described by the carrier rate equation which may be writ-
ten as follows [4]:

2 2 C J
D,V" n—Bn —;l;gSO‘I’+q—t =0 3)

where we assume oJn/odt = 0 (steady-state condition).
D g is the effective diffusion constant, n the local carrier
density, B the carrier recombination constant, ¢ the speed
of light in free space, ny the background refractive index
of the active region. g the gain profile across the active
region, g the electronic charge, ¢ the active layer thickness,
J the local injected current density, S, the average photon
density in the optical cavity, and ¥ the normalized optical
intensity which may be defined as:

E(x |
¥ (xy) = )l
[[1B Gy 1Paxay

Equation (3) assumes that the active layer thickness ¢ is
small compared to the carrier diffusion length. This means
that no recombination occurs outside the active region.
Equations (1)~(3) are then solved self-consistently by
using the complex finite difference method [5].

@

The field profile and propagation constant f§ can be
obtained by solving the scalar wave equation which can be
written as [3]:

VIE+ (Kon® (x,y) =BHE = 0 ©)

where V% is the transverse operator, B is the propagation
constant, n(x,y} is the local refractive index which exhibits
a complex profile in the active region, and ky=21/A, with
Ao the free space wavelength of operation. In the imple-
mentation of the complex finite difference method the
wave equation (5) can be written in five-point finite differ-
ence form to produce an expression for the field at each

mesh point in terms of its four nearest neighbors. Each
mesh point lies at the center of a cell of constant refractive
index and changes in refractive index occur only at the cell
boundaries. An iteration method is used to solve for the
mesh point field values E(i,j) and the propagation constant
B which is found from a Rayleigh variational principle
form [3][4]:

J' J‘ [EV2E + Kn® (x,y) E* 1 dxdy
'”E2dxdy

In this method an initial guess is made for B and the
field value at each mesh point. Equations (5) and (6) are
applied alternately. Each field value is updated and after
each scan a new value of B is found. This process is con-
tinued until the solution for the mesh point field values and
eigenvalue P converge. Note that the complex refractive
indices are used directly in equations (5) and (6) producing
a complex propagation constant and complex field values.
This makes possible the straightforward application of the
complex finite difference algorithm to active optical
waveguide devices and semiconductor lasers with com-
plex refractive indices in the active waveguiding region

{41.

2 _

(6)

Electrode Strip

A\\\m

ez

p-Cladding Active region

n-Cladding
n-Substrate

—
\
ch XS -l w r XS
¢ i s MY
H n, d
t — d+t
Y, D
(b)

Fig.1. Typical high speed semiconductor lasers structure.

NUMERICAL RESULTS

To test the algorithm presented we first analyze a sin-
gle-strip semiconductor laser with a discontinuity in the
electrode structure. A biasing voltage of V=1.58V is
applied to the electrode. The injected current density and
carrier density profile along the active region is displayed
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in Fig. 2 (a) and (b). The numerical analysis shows clearly
that, as expected, in the region where the strip widens the
carrier density is higher than in the narrower strip region.
This results in a higher refractive index and consequently
higher local gain in the active waveguiding region. This
will have a direct effect on the mode confinement factor.

To demonstrate the flexibility of the algorithm we
analyze next a semiconductor gain-guided laser with a slab
waveguide structure. The 2D field profile for the funda-
mental scalar mode is shown in Fig. 3 (single-strip slab
waveguide) and Fig.4 (twin-strip slab waveguide), respec-
tively (W=3 pum, H=1 pm and G=3 pum (for twin-strip)).
The refractive indices used are nc=1, ng=n=3.40 at an
operating wavelength of 1.50 um. The refractive index in
the active region, but outside the area of the injected cur-
rent, is normally a real value of n,=3.44. Inside the area
through which the injected current flows n, is complex,
whereby real and imaginary parts change in lateral direc-
tion. The mesh sizes used to discretize the structure are
0.05 and 0.2 pm in the x- and y-directions, respectively. A
total of 10500 mesh cells is used. Fig. 3 clearly shows that
the field is concentrated in the active waveguiding region
under the strip with a bias voltage applied. For an asym-
metrically pumped twin strip laser (two different biasing
voltages applied), the gain-guiding region will shift
towards the strip with the larger biasing voltage. This is
shown in Fig. 4 and illustrates the beam steering capability
of this structure.

The algorithm developed here provides the complex
propagation constant and field profile for the fundamental
and first order modes. Both are functions of the injected
current into the active layer. With a biasing voltage
Vs=1.6V, the single-strip laser structur in
Fig3 has a complex propagation constant of
Beff=3.40255+j3.61193x10'4, and the twin-strip laser
structure in Fig.4 |3eﬂ=3.40452+j9.42884x10’4 (the bias-
ing voltages are Vs1=1.65V and Vs2=1.6V). The real part
of Pesr represents the normal propagation constant. The
positive imaginary part indicates the optical gain for the
wave propagating in the medium. A negative imaginary
part indicates loss and occurs only outside the gain
medium region. Comparing the two structures, the twin-
strip laser requires larger bias and shows a higher
imaginary Pgg value than that of the single-strip laser,
which means also higher optical gain.

Semiconductor lasers with dielectric ridge and rib
waveguide structures can also be analyzed with the
approach developed here. First, we consider the ridge
waveguide lasers. The 2D field profile of the fundamental
scalar mode is shown in Fig. 5 (a) and (b) for the operating
wavelength 1.50um, where ng=n;=3.17 and n,=3.34. At

the Dbiasing voltage of Vs=1.60V, we have

Beg=3.1952+j9.5242x 104,

The 2D field profile of the rib waveguide laser is
shown in Fig. 6 (a) and (b) for the fundamental scalar
mode operating at 1.50um, where ng=n=3.17 and
n,=3.34. At a biasing voltage of Vs=1.60V, we have
Beﬁ=3.1967+j1.0538x10'3. It is obvious that for these two
index-guiding configurations the optical field is more con-
fined in the wave guiding region compared to the gain-
guided laser. At the same time, they have also higher val-
ues of the imaginary part of B.g compared to the gain-
guided laser.

CONCLUSIONS

We have presented a 3D self-consistent complex finite
difference approach to analyze SCH semiconductor lasers
with non-uniform strip geometry. Current and carrier dis-
tribution along the active layer of a variety of semiconduc-
tor laser structures have been calculated as well as their
propagation constant and mode profiles. It was shown that
electrode discontinuities can significantly change the com-
plex refractive index in the active layer, which in turn may
change the mode profile of the fundamental lasing mode.
On the basis of this work a more accurate high frequency
description of the laser diode is possible.
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Fig.2 Semiconductor lasers with strip discontinuity (a) the injected cur-
rent density distribution; (b) the injected carrier concentration pro-
file in the active waveguiding region (biasing voltage V=1.58 V).

Fig.3 Two-dimensional field profile for the fundamental scalar mode
within the semiconductor gain-guided laser diode with V;=1.6 V.

Contour levels are at 10% intervals of the maximum field.
Vs1 Vg2
el

@:

Fig.4 Two-dimensional field profile for the fundamental scalar mode
within the semiconductor gain-guided laser diode with V;=1.65V,
V=1.6V. The effect of beam steering is clearly visible. Contour
levels are at 10% intervals of the maximum ficld.

Fig.5 (a) The fundamental field distribution within the ridge waveguide
semiconductor laser. (A=1.50pm)

Vs

Fig.5 (b) Two-dimensional field profile for the fundamental scalar
mode within a ridge waveguide semiconductor laser. Contour
levels are at 10% intervals of the maximum field amplitude.
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Fig.6 (a) The fundamental field distribution within the rib waveguide
structure semiconductor laser. (A=1.50pum)

Fig.6 (b) Two-dimensional field profile for the fundamental scalar mode
within the rib waveguide semiconductor laser. Contour levels
are at 10% intervals of the maximum field amplitude.
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